Richard Dawkins: El largo brazo del gen

13 de febrero de 2019




[Este capítulo fundamental cierra las ediciones originales (1985) (incluidas las digitales) de El gen egoísta. Las ediciones abreviadas posteriores como la de Biblioteca Científica Salvat 1993, no lo contienen a pesar de su importancia por ser un puente indispensable a El fenotipo extendido y, en cierto modo un no tan breve resumen]. Nota PD.



Un desasosiego perturba el corazón de la teoría del gen egoísta. Es la tensión existente entre el gen y el cuerpo individual como agente fundamental de la vida. Tenemos, por un lado, la imagen seductora de los replicadores independientes de ADN, brincando como gamuzas, libres y sin trabas, a lo largo de las generaciones, unidos temporalmente en máquinas de supervivencia desechables, espirales inmortales, deshaciéndose de una infinita sucesión de seres mortales al avanzar hacia sus eternidades separadas. Por otro lado, miramos los propios cuerpos individuales y cada uno de ellos es, obviamente, una máquina coherente, integrada, inmensamente compleja, con una manifiesta unidad de propósito. Un cuerpo no aparece como el producto de una reunión laxa y temporal de agentes genéticos opuestos que apenas tienen tiempo de conocerse antes de embarcarse en el espermatozoide o el óvulo para la siguiente etapa de la gran diáspora genética. Tiene un cerebro provisto de una única mente que coordina una cooperativa de miembros y órganos sensoriales para conseguir un fin. El cuerpo se parece y se comporta como un impresionante agente por derecho propio.

En algunos capítulos de este libro [El gen egoísta] hemos considerado al organismo individual como un agente que se esfuerza por maximizar su éxito en la transmisión de todos sus genes. Imaginamos a un individuo animal realizando complicados cálculos económicos de «como si» sobre los beneficios genéticos de los distintos modos de acción. En otros capítulos se presentaron los aspectos racionales desde el punto de vista de los genes. Sin mirar la vida con los ojos del gen no hay razón particular alguna por la que un organismo deba «cuidar» su éxito reproductor y el de sus parientes en lugar de, por ejemplo, atender a su propia longevidad. ¿Cómo resolveremos esta paradoja de los dos modos de mirar la vida? Mi modo de intentarlo se expresa en The Extended Phenotype, el libro que, más que ninguna otra cosa lograda en mi vida profesional, es mi orgullo y mi joya. Este capítulo constituye un breve resumen de los temas contenidos en dicho libro, aunque mejor sería que dejara de leer ahora y se pasara a The Extended Phenotype.

Desde mi visión sensible de la cuestión, la selección darwiniana no actúa directamente sobre los genes. El ADN está encapsulado en la proteína, envuelto en membranas, protegido del mundo e invisible a la selección natural. Si ésta quisiera elegir directamente las moléculas de ADN difícilmente encontraría un criterio a seguir. Todos los genes tienen el mismo aspecto, lo mismo que todas las cintas de grabación parecen iguales. Las diferencias importantes entre ellos emergen sólo en sus efectos. Esto suele significar efectos sobre el proceso del desarrollo embrionario y, por consiguiente, sobre la forma del cuerpo y el comportamiento. Los genes con éxito son aquellos que en el entorno influenciado por todos los demás genes dentro de un embrión protegido, ejercen efectos beneficiosos sobre dicho embrión. Beneficiosos significa que pueden permitir al embrión desarrollarse y convertirse en un adulto de éxito, un adulto que probablemente se reproducirá y transmitirá esos mismos genes a futuras generaciones. La palabra técnica fenotipo se usa para designar la manifestación física de un gen, el efecto que, en comparación con sus alelos, tiene sobre el cuerpo vía desarrollo. El efecto fenotípico de un gen concreto puede ser, digamos, el color verde de los ojos. En la práctica, la mayoría de los genes tienen más de un efecto fenotípico; por ejemplo, ojos verdes y pelo rizado. La selección natural favorece algunos genes más que otros no por la misma naturaleza de éstos, sino por sus consecuencias, es decir, por sus efectos fenotípicos.

Los darwinistas han elegido en general para su estudio los genes cuyos efectos fenotípicos benefician, o penalizan, la supervivencia y la reproducción de todo el cuerpo. No han tendido a considerar los beneficios para el propio gen. Ésta es, en parte, la razón por la cual la paradoja no suele hacerse sentir en el corazón de la teoría. Por ejemplo, un gen puede tener éxito mejorando la velocidad de carrera de un depredador. Todo el cuerpo de éste, incluyendo todos sus genes, tiene más éxito porque corre más deprisa. Su velocidad le ayuda a sobrevivir y tener hijos y, por consiguiente, se transmiten más copias de sus genes, incluyendo el de la velocidad en la carrera. Aquí la paradoja desaparece convenientemente, porque lo que es bueno para un gen lo es para todos.

¿Pero qué pasa si un gen ejerció un efecto fenotípico bueno para sí mismo pero malo para el resto de los genes del cuerpo? Esto no es un sueño. Se conocen casos de este tipo, por ejemplo, el intrincado fenómeno llamado impulso meiótico. Recordemos que la meiosis es ese tipo especial de división celular que reduce a la mitad el número de cromosomas y da lugar a espermatozoides u óvulos. La meiosis normal es una lotería totalmente aleatoria. De cada par de alelos, sólo uno de ellos será el afortunado que entre en un espermatozoide o un óvulo determinados. Pero la probabilidad es la misma para cualquiera de ellos y si sacamos un promedio con una gran cantidad de espermatozoides (u óvulos) resultará que la mitad de ellos contiene un alelo y la otra mitad el otro. La meiosis es como echarlo a cara o cruz, aunque éste es un proceso físico sometido a la influencia de multitud de circunstancias: el viento, la fuerza con la que se tira la moneda, etc. La meiosis es, también, un proceso físico y los genes pueden influir sobre ella. ¿Qué sucede si surgió un gen mutante que no afectaba a algo obvio, como el color o el rizado del pelo, sino a la propia meiosis? Supongamos que modificaba la meiosis de tal manera que el propio gen mutante tenga más probabilidades de llegar al óvulo que su alelo. Hay genes de este tipo que perturban la segregación. Presentan una simplicidad diabólica. Cuando surge por mutación un gen de esta clase, se extiende inexorablemente a través de la población a expensas de su alelo. Esto es lo que se conoce como impulso meiótico. Se producirá aunque los efectos sobre el bienestar del cuerpo, y sobre el bienestar de todos los otros genes de dicho cuerpo, sean desastrosos.

A lo largo de este libro hemos alertado sobre la posibilidad de que organismos individuales «engañen» de muy sutiles maneras a sus compañeros sociales. Estamos hablando de genes individuales que engañan a otros genes con los que comparten un cuerpo. El genetista James Crow los llama genes «que vencen al sistema». Uno de los perturbadores de la segregación mejor conocido es el llamado gen t del ratón. Cuando un ratón tiene dos genes t muere en su juventud o es estéril. Por consiguiente, se dice que t es «letal» en homocigosis. Si un ratón macho tiene sólo un gen í será un individuo normal y sano, excepto en un aspecto destacable: si examinamos sus espermatozoides veremos que hasta el 95% de ellos contienen genes í y sólo un 5% el alelo normal. Es evidente que se trata de una considerable desviación de la esperada proporción del 50%. Cada vez que consigue surgir por mutación un alelo t en una población salvaje, se propaga de inmediato y rápidamente, como un incendio en la maleza. ¿Cómo no, si tiene una enorme ventaja desleal en la lotería meiótica? Se dispersa tan rápidamente que pronto gran número de los individuos de la población heredan el gen t en dosis doble (es decir, de ambos progenitores). Estos individuos mueren o son estériles, y antes de que transcurra mucho tiempo es probable que toda la población esté a punto de extinguirse. Existen pruebas de que en el pasado poblaciones salvajes de ratones se han extinguido a consecuencia de epidemias de genes t.

No todos los perturbadores de la segregación tienen efectos secundarios tan destructivos como el gen t. Pero de cualquier modo, la mayoría posee al menos alguna consecuencia adversa; casi todos los efectos secundarios genéticos son adversos y una mutación nueva normalmente sólo se propaga si sus efectos malos se compensan con otros buenos. Si tanto unos como otros se aplican a todo el cuerpo, el efecto neto puede seguir siendo bueno para éste. Pero si los efectos malos actúan sobre el cuerpo y los buenos sólo sobre los genes, desde el punto de vista del cuerpo, el efecto neto es malo). A pesar de estos deletéreos efectos secundarios, si surge por mutación un trastorno en la segregación, seguramente tenderá a diseminarse por la población. La selección natural (que, después de todo, actúa a nivel génico) favorece los trastornos de la segregación aunque sus efectos al nivel del organismo individual sean probablemente malos. Aunque los trastornos de la segregación existen, no son comunes. Podríamos preguntarnos por qué no lo son, que es otra forma de preguntar por qué el proceso de la meiosis es normalmente limpio, tan escrupulosamente imparcial como arrojar una moneda a cara o cruz. Veremos cómo la respuesta surge en cuanto hayamos entendido por qué existen los organismos.

El organismo individual es algo cuya existencia dan por sentada la mayoría de los biólogos, probablemente porque sus partes se agrupan de modo tan unido e integrado. Los interrogantes sobre la vida suelen ser preguntas sobre los organismos. Los biólogos se preguntan por qué los organismos hacen esto o aquello. Con frecuencia se preguntan por qué los organismos se reúnen formando sociedades. No se preguntan —y deberían hacerlo— por qué la materia viva se agrupa primero para formar organismos. ¿Por qué no sigue siendo el mar el campo de batalla primordial de los replicadores libres e independientes? ¿Por qué los viejos replicadores se reunieron para construir pesados robots y residir en ellos, y por qué esos robots —los cuerpos individuales, usted y yo— son tan grandes y complejos? A muchos biólogos les resulta difícil incluso ver que aquí hay algo cuestionable. Es porque para ellos es secundario plantear sus preguntas al nivel del organismo individual.

Algunos llegan a considerar al ADN como un dispositivo que los organismos utilizan para reproducirse a sí mismos, lo mismo que el ojo es el dispositivo utilizado para ver. Los lectores de este libro se darán cuenta que esta actitud constituye un error muy profundo. La verdad se abrirá paso estruendosamente en su cabeza. Se darán cuenta asimismo de que la actitud alternativa, la visión de la vida por parte del gen egoísta, constituye por sí misma un gran problema. Ese problema —casi el inverso— es por qué existen los organismos individuales, especialmente en una forma tan grande y tan llena de propósitos coherentes que ha confundido a los biólogos haciéndoles invertir la verdad.

Para resolver nuestro problema debemos comenzar liberando nuestra mente de las viejas actitudes que daban por sentado al organismo individual; de lo contrario estaremos eludiendo la cuestión. El instrumento con el que purgaremos nuestras mentes es la idea de lo que llamo el fenotipo ampliado. Es esto y lo que significa, lo que ahora voy a tratar.

Los efectos fenotípicos de un gen se ven normalmente como todos los efectos que tiene sobre el cuerpo en que se encuentra. Ésta es una definición convencional. Pero veremos ahora que los efectos fenotípicos de un gen deben considerarse como todos los efectos que tiene sobre el mundo. Puede ser que los efectos de un gen, en realidad, resulten estar confinados a la sucesión de cuerpos en los que reside dicho gen. Pero si es así, será una realidad. No será simplemente algo que forme parte de nuestra definición. Recordemos a todo esto que los efectos fenotípicos de un gen son las herramientas con las que se catapulta a sí mismo hasta la siguiente generación. Y añadiré solamente que las herramientas pueden alargar su brazo más allá de la pared individual del cuerpo. ¿Qué significa en la práctica hablar de un gen que tiene un efecto fenotípico extendido al mundo exterior al cuerpo donde reside? Vienen a la mente ejemplos de artefactos como los diques de castor, el nido de las aves y las cápsulas de los tricópteros.

Los tricópteros, o frigáneas, son pequeños insectos de color pardo que nos pasan desapercibidos, pues vuelan torpemente por encima de los ríos. Esto sucede cuando son adultos. Pero antes de emerger a la fase adulta, pasan un período bastante largo en estadio de larvas que caminan por el fondo de las aguas. Dichas larvas son cualquier cosa menos inconspicuas. Se cuentan entre las criaturas más notables del planeta. Utilizando un cemento que ellas mismas producen, construyen con gran habilidad cápsulas alargadas con el material que recolectan del fondo de la corriente. Esta cápsula es una casa móvil que llevan consigo cuando andan, lo mismo que un caracol o un cangrejo ermitaño, excepto que el animal la fabrica en lugar de crecer o aposentarse en su interior. Algunas especies de tricópteros emplean palitos como material de construcción; otras fragmentos de hojas y otras trozos de conchas de caracol. Pero quizás las más espectaculares sean las fabricadas con piedrecitas. La larva las elige con gran cuidado, rechazando las que son demasiado pequeñas o excesivamente grandes para los huecos que van quedando; incluso dándoles vueltas hasta que encajan.

Pero, ¿por qué todo esto nos impresiona tanto? Si nos obligamos a pensar de modo imparcial, deberíamos estar más impresionados por la arquitectura del ojo de la larva de tricóptero, o de la articulación de sus patas que por la de la cápsula, que comparativamente es más modesta. Después de todo, el ojo y la articulación son mucho más complicados y «diseñados» que la cápsula. Pero, quizás porque ambos se desarrollaron de un modo análogo a nuestros ojos y a nuestras articulaciones, proceso constructivo que realizamos en el interior de nuestras madres, nos impresiona más, lógicamente, la cápsula.

Puesto que nos hemos apartado ya tanto de la cuestión principal no puedo resistirme a ir un poco más allá. Por mucho que nos impresionen las cápsulas de los tricópteros, paradójicamente nos sorprenden mucho menos que un logro análogo en animales más próximos a nosotros. Imaginemos los titulares si un biólogo marino descubriera una especie de delfín que tejiera grandes redes de pesca de intrincada malla, de diámetro equivalente a veinte veces la longitud del animal. Pues bien, las telas de araña nos parecen corrientes; las vemos más como una molestia en casa que como una de las maravillas del mundo. Y pensemos en el revuelo que se produciría si Jane Goodall regresara del río Gombe con fotografías de chimpancés construyendo sus propias casas, provistas de un buen tejado, aisladas y hechas con piedras seleccionadas unidas entre sí y sujetas con mortero. Pero las larvas de tricóptero, que hacen eso precisamente, sólo despiertan un interés pasajero. Suele decirse, como si sirviera de justificación para el empleo de este doble rasero, que las arañas y los tricópteros consiguen esas obras arquitectónicas por «instinto». Pero, ¿y qué? En cierto sentido eso lo hace todavía más impresionante.

Volvamos al argumento principal. La cápsula de las larvas de tricóptero, nadie lo pone en duda, es una adaptación desarrollada por la selección darwinana. Tuvo que ser favorecida por la selección, del mismo modo que, por ejemplo, el caparazón duro de las langostas. Es una cubierta protectora para el cuerpo. Como tal, significa una ventaja para todo el organismo y todos sus genes. Pero hemos aprendido a considerar los beneficios para el organismo como incidentales en lo que respecta a la selección natural. Los beneficios que realmente cuentan resultan de aquellos genes que confieren a la concha sus propiedades protectoras. En el caso de la langosta, así suele ser. Es evidente que el caparazón forma parte de su cuerpo. Pero, ¿qué sucede con la cápsula de las larvas de tricóptero? La selección natural favoreció los genes de los tricópteros ancestrales que hacían que su poseedor construyera cápsulas eficaces. Los genes actuaron sobre la conducta, influyendo probablemente sobre el desarrollo embrionario del sistema nervioso. Pero lo que el genetista ve realmente es el efecto de los genes sobre la forma y otras características de la cápsula. El genetista reconoce genes «para» la forma de ésta, del mismo modo que hay genes, por ejemplo, para la forma de la pierna. Hay que admitir que nadie ha estudiado realmente la genética de la construcción de dichas cápsulas. Para hacerlo habría que guardar un cuidadoso registro genealógico del cruce entre estos tricópteros en cautividad, y cruzarlos resulta difícil. Pero no es necesario estudiar genética para convencerse de que, al menos una vez, hubo genes que influyeron en las diferencias entre las cápsulas de tricópteros. Todo lo que se necesita es un motivo suficiente para creer que dicha cápsula es una adaptación darwiniana. En tal caso tuvo que haber genes controlando sus variaciones, pues la selección no puede producir adaptaciones a menos que haya diferencias hereditarias entre las que seleccionar.

Aunque los genetistas puedan pensar que es una idea estrambótica, para nosotros tiene sentido hablar de genes «para» la forma de la cápsula, el tamaño de las piedrecillas, la dureza de la piedra, etc. Cualquier genetista que ponga objeciones a este lenguaje tendría que ponerlas también, para ser consecuente, a referirse a genes para el color de los ojos, genes para los guisantes rugosos, etc. Un motivo por el que la idea puede parecer estrambótica, en el caso de las piedrecillas, es que éstas no son material vivo. Además, la influencia de los genes sobre las propiedades de las piedrecillas parece especialmente indirecta. Un genetista diría que donde los genes influyen directamente es sobre el sistema nervioso, que actúa de intermediario en la conducta de elección de piedrecillas, no sobre éstas. Pero invito a esos genetistas a examinar con cuidado lo que significa hablar de genes que ejercen una influencia sobre un sistema nervioso.

Todos los genes, en efecto, influyen de forma directa sobre la síntesis de las proteínas. La influencia de un gen sobre un sistema nervioso o, para aquel otro caso, sobre el color de los ojos o la rugosidad del guisante, es siempre indirecta. El gen determina una secuencia de proteínas que influye sobre X, que influye sobre Y, que influye sobre Z, que a su vez, eventualmente, influirá sobre la rugosidad de la semilla o las conexiones celulares del sistema nervioso. La cápsula de los tricópteros es sólo la extensión de una secuencia de este tipo. La dureza de las piedrecillas es un efecto fenotípico extendido de los genes del insecto. Si es perfectamente legítimo decir que un gen afecta a la rugosidad de un guisante o el sistema nervioso de un animal (como creen todos los genetistas), es igualmente legítimo hablar de que un gen afecta a la dureza de las piedrecillas de la cápsula de una larva de tricópteros. Una idea sorprendente, ¿no es verdad? Pero el razonamiento es impecable.

Ya estamos listos para el siguiente paso en el argumento: los genes de un organismo tienen efectos fenotípicos extendidos sobre el cuerpo de otro organismo. Las cápsulas de los tricópteros nos ayudaron a dar el paso anterior: la concha de los caracoles nos ayudarán en éste. La concha desempeña el mismo papel para el caracol que la cápsula para la larva de tricóptero. La secretan las propias células del animal, así que un genetista convencional se sentiría feliz de hablar de genes «para» cualidades de la concha, tales como su espesor. Pero sucede que los caracoles parasitados por ciertas especies de tremátodos tienen una concha más gruesa. ¿Qué puede significar este engrosamiento? Si los caracoles parasitados tienen conchas más delgadas que los normales, lo explicaríamos como un evidente efecto debilitador en la constitución del molusco. Pero, ¿una concha más gruesa? Es probable que proteja mejor al caracol. En realidad, parece como si el parásito estuviera ayudando a su huésped mejorando su concha. ¿Es así?

Debemos meditar con más cuidado. Si la concha más gruesa es realmente mejor para el caracol, ¿por qué no la tiene en los restantes casos? Es probable que la respuesta tenga un cariz económico. La construcción de una concha es costosa para el caracol. Requiere energía. Se necesitan calcio y otros productos químicos que deben extraerse de un alimento trabajosamente conseguido. Si no se gastaran en la fabricación de la sustancia para la concha, todos estos recursos podrían emplearse en cualquier otra cosa, como por ejemplo ampliar la descendencia. Un caracol que gaste muchos recursos construyéndose una concha de espesor adicional habrá creado más seguridad para su propio cuerpo. Pero, ¿a costa de qué? Puede vivir más tiempo, pero tendrá menor éxito reproductivo y puede que no transmita sus genes. Entre los que dejará de transmitir están los que construyen conchas de mayor espesor. En otras palabras, una concha lo mismo puede ser muy gruesa que demasiado delgada (esto de forma más obvia). Así, cuando un tremátodo incita al caracol a secretar una concha gruesa no le está haciendo ningún favor, salvo que el parásito corra con el coste económico de ese engrosamiento. Y podemos apostar con certeza a que no está siendo tan generoso. El tremátodo ejerce alguna influencia química oculta sobre el molusco que obliga a éste a alejarse de su propio espesor «preferido» de la concha. Puede que prolongue su vida, pero no está ayudando a sus genes.

¿Qué saca el tremátodo de todo esto? ¿Por qué lo hace? Mi conjetura es la siguiente. Tanto los genes del caracol como los del parásito se benefician de la supervivencia del cuerpo del molusco, en igualdad de las restantes condiciones. Pero supervivencia no equivale a reproducción y es probable que exista un compromiso. Mientras que es evidente que los genes del caracol se benefician de la reproducción de éste, no sucede lo mismo con los del parásito. Esto se debe a que un tremátodo no tiene una expectativa concreta de que sus genes se alojen en la descendencia del actual huésped. Puede que así sea, pero podría suceder que fueran los de cualquier otro tremátodo rival. Admitiendo que la longevidad del caracol se ha de adquirir al precio de cierta pérdida del éxito reproductivo por parte del molusco, los genes del tremátodo estarán «contentos» de obligar al otro a pagar el coste, pues a ellos no les interesa la reproducción del caracol en sí. Los genes de éste, por otro lado, no están contentos de pagar ese precio, ya que su futuro a largo plazo depende de la reproducción del caracol. Por ese motivo, aventuro que los genes del parásito ejercen una influencia sobre las células secretoras de la concha del caracol, influencia que les beneficia a ellos mismos, pero que resulta onerosa para los genes de su huésped. Esta teoría es susceptible de comprobación, aunque hasta la fecha no ha sido sometida a ensayo.

Ahora estamos en condiciones de generalizar la lección de los tricópteros. Si tengo razón en lo que están haciendo los genes del tremátodo, la consecuencia es que podemos hablar legítimamente de genes del parásito que influyen sobre el cuerpo del caracol, exactamente en el mismo sentido en que los genes de caracol influyen sobre su cuerpo. Es como si los genes se extendieran por fuera de su «propio» cuerpo y manipularan el mundo exterior. Lo mismo que en el caso de las larvas de tricópteros, este lenguaje puede turbar a los genetistas. Están acostumbrados a que los efectos de un gen se limiten al cuerpo en que residen. Pero de nuevo, como en el caso de los tricópteros, al mirar con mayor detenimiento lo que quieren decir los genetistas cuando dicen que un gen tiene «efectos», se demuestra que su turbación está fuera de lugar. Sólo tenemos que aceptar que el cambio en la concha del caracol es una adaptación del tremátodo. Si es así, tiene lugar por selección darwiniana de los genes del parásito. Hemos demostrado que los efectos fenotípicos de un gen pueden extenderse no sólo a objetos inanimados, como las piedrecillas, sino también a «otros» cuerpos vivos.

La historia de los caracoles y de los tremátodos es sólo el principio. Desde hace mucho tiempo se sabe que los parásitos de todo tipo ejercen influencias fascinantemente insidiosas sobre sus huéspedes. Un protozoo microscópico parásito perteneciente al género Nosema, que infecta las larvas de los escarabajos de la harina, ha «descubierto» el modo de fabricar un producto químico muy especial para estos coleópteros. Lo mismo que otros insectos, estos escarabajos poseen una hormona, la hormona juvenil, que hace que las larvas se mantengan como tales. El cambio normal del estado larvario al adulto se desencadena cuando la larva deja de producir dicha hormona. El parásito Nosema ha conseguido sintetizar (obtener un análogo químico muy parecido a) esta hormona. Millones de protozoos se agrupan para producir en masa la hormona juvenil en el cuerpo de la larva, evitando así que se transforme en adulto. En su lugar, continúa creciendo hasta convertirse en una larva gigante que pesa más del doble que un adulto. No sirven para propagar los genes del escarabajo, pero son el cuerno de la abundancia para los parásitos. El gigantismo de las larvas de coleópteros es un efecto fenotípico extendido de los genes de protozoos.

He aquí ahora un caso que provoca más ansiedad freudiana que los escarabajos de Peter Pan: la castración parasitaria. Una criatura llamada Sacculina parásita a los cangrejos. Está emparentada con los percebes y tiene el aspecto de una planta parásita. Desarrolla un elaborado sistema de raíces que penetran en los tejidos del desgraciado cangrejo, chupando nutrientes de su cuerpo. Probablemente no sea accidental que entre los primeros órganos que ataca estén los testículos o los ovarios; reserva así para más tarde los órganos que el cangrejo necesita efectivamente para sobrevivir, no para reproducirse. El parásito castra así al huésped. Lo mismo que un buey de engorde, el cangrejo castrado retrae energía y recursos de la reproducción y los dedica a su propio cuerpo: una excelente cosecha para el parásito a expensas de la reproducción del huésped.

Es casi la misma historia que aventuré para Nosema en el escarabajo de la harina y para el tremátodo en el caracol. En los tres casos, si admitimos que los cambios en el huésped son adaptaciones darwinianas en beneficio del parásito, deben considerarse como efectos fenotípicos extendidos de los genes del parásito. Los genes, pues, se extienden fuera de su «propio» cuerpo para influir sobre los fenotipos de otros cuerpos. Los intereses de los genes del parásito y los del huésped pueden coincidir en gran medida. Desde el punto de vista del gen egoísta podemos pensar que ambos, los genes del tremátodo y los del caracol, son «parásitos» en el cuerpo de este último. Ambos ganan rodeados de la misma concha protectora, aunque difieran en sus «preferencias» sobre el espesor de dicha concha. Esta divergencia surge, fundamentalmente, del hecho de que el método de abandonar el cuerpo del caracol y penetrar en otro es diferente. Para los genes del molusco, el método de salida son los espermatozoides o los óvulos del caracol. Para los del tremátodo es muy diferente. Sin entrar en detalles (ya que resultan demasiado complicados), lo que interesa es que no abandonan el cuerpo con los espermatozoides o los óvulos del huésped.

Sugiero que la cuestión más importante que puede plantearse acerca de cualquier parásito es ésta: ¿se transmiten sus genes a las generaciones futuras a través de los mismos vehículos que los genes del huésped? Si no es así, es previsible que perjudique a éste de un modo u otro. Pero en caso afirmativo, el parásito hará todo lo posible para ayudar al huésped, no sólo a sobrevivir, sino también a reproducirse. En el tiempo evolutivo, puede que deje de ser parásito, que coopere con él y que llegue a fundirse con sus tejidos, resultando totalmente irreconocible como parásito. Puede ser, que nuestras células hayan realizado hace mucho ese proceso: todos somos reliquias de antiguos parásitos fusionados.

Veamos lo que sucede cuando los genes del parásito y los del huésped comparten una salida común. Unos escarabajos xilófagos, que taladran la madera, (pertenecientes a la especie Xyleborus ferrugineus) son parasitados por bacterias que no sólo viven en el cuerpo del huésped, sino que utilizan sus huevos como medio de transporte para acceder a un nuevo huésped. Por consiguiente, los genes de tales parásitos resultan beneficiados casi exactamente por las mismas circunstancias futuras que los del huésped. Puede esperarse que ambas series de genes «vayan juntas» por las mismas razones que todos los genes de un individuo se transmiten normalmente juntos. Es irrelevante que algunos sean «genes de escarabajo» y otros «genes de bacterias». Ambos están «interesados» en la supervivencia del coleóptero y en la propagación de sus huevos, pues ambos «ven» en dichos huevos su pasaporte hacia el futuro. Por lo tanto, los genes bacterianos comparten un destino común con los del huésped y, según mi interpretación, cabría esperar que las bacterias cooperaran con sus escarabajos en todos los aspectos de la vida.

Esa «cooperación» es pacífica y el servicio que prestan a los escarabajos no podría ser más íntimo. Estos coleópteros son haplodiploides, lo mismo que las abejas y las hormigas (véase el capítulo X). Si un óvulo es fertilizado por un macho, siempre se desarrolla dando una hembra. Un óvulo sin fertilizar se convierte en macho. En otras palabras, los machos no tienen padre. Los óvulos que los producen se desarrollan de modo espontáneo sin que haya penetrado un espermatozoide. Pero, a diferencia de los óvulos de las abejas y las hormigas, los de este escarabajo necesitan ser penetrados por algo. Ahí es donde aparecen las bacterias. Activan los huevos sin fertilizar, provocando su desarrollo para dar lugar a escarabajos machos. Estas bacterias son, por supuesto, ese tipo de parásitos que, como antes indicaba, dejarían de serlo para convertirse en mutualistas, precisamente porque se transmiten con los huevos del huésped, junto con los genes «propios» de éste. En última instancia, su «propio» cuerpo probablemente desaparecerá, fusionándose por completo con el del «huésped».

Hay una escala muy reveladora que encontramos todavía hoy entre diversas especies de hidras, pequeños animales sedentarios, provistos de tentáculos, parecidos a las anémonas de mar. Sus tejidos tienden a ser parasitados por algas. En las especies Hydra vulgaris e Hydra attenuata las algas constituyen auténticos parásitos que les provocan enfermedades. Por el contrario, en Chlorohydra viridissima, las algas nunca faltan en los tejidos de las hidras y son una contribución útil a su bienestar, proporcionándoles oxígeno. Ahora viene lo interesante. Como no podía por menos que esperarse, en Chlorohydra las algas se transmiten a la siguiente generación por medio de los huevos de la hidra. En las otras dos especies no. Los intereses de los genes del alga y los de Chlorohydra coinciden. Ambos están interesados en hacer cuanto esté en su mano para aumentar la producción de huevos de la hidra. Pero los genes de las otras dos especies de hidra no están «de acuerdo» con los de sus algas. Aunque no en la misma medida. Ambas series de genes pueden tener interés en que sobrevivan los cuerpos de sus respectivas hidras, pero sólo los genes de la hidra se preocupan por la reproducción de la hidra. Así pues, algunas algas actúan como parásitos debilitantes en lugar de evolucionar hacia una cooperación benigna. La clave, repitámoslo, está en que un parásito cuyos genes aspiran al mismo destino que los de su huésped llega a compartir todos sus intereses, hasta el momento en que deja de actuar parasitariamente. El destino, en este caso, significa generaciones futuras. Los genes de Chlorohydra y los del alga, los genes del escarabajo y los de la bacteria, alcanzan el futuro sólo por la vía de los huevos del huésped. Por consiguiente, cualesquiera que sean los «cálculos» que puedan hacer los genes parásitos sobre una política óptima, en cualquier departamento de la vida, convergerán exactamente, o casi exactamente, con la misma política óptima resultante de «cálculos» similares efectuados por los genes del huésped. En el caso del caracol y el tremátodo parásito, decidimos que sus espesores preferidos de concha diferían. En el caso del escarabajo y su bacteria, el huésped y la bacteria están de acuerdo en preferir la misma longitud de ala o cualesquiera de las otras características del cuerpo del escarabajo. Podemos predecirlo sin saber exactamente para qué pueden usar los escarabajos sus alas, o cualquier otra cosa. Podemos hacerlo simplemente a partir de nuestro razonamiento de que los genes del insecto y los de la bacteria harán todo lo necesario para controlar los mismos sucesos futuros, sucesos favorables para la propagación de los huevos del escarabajo.

Podemos tomar este argumento en sus conclusiones lógicas y aplicarlo a genes normales, «propios». Nuestros propios genes cooperan entre sí, no porque sean nuestros, sino porque comparten la misma salida —espermatozoide u óvulo— en el futuro. Si algún gen de algún organismo, como el humano, pudiera descubrir una manera de propagarse que no dependiera de la ruta convencional a través de espermatozoides u óvulos, la tomaría y sería menos cooperativo. Así aprovecharía otra serie diferente de futuras salidas de otros genes del cuerpo. Ya hemos visto ejemplos de genes que modifican la meiosis a su favor. Quizás los haya también que han roto los «canales adecuados» de espermatozoide/óvulo y se aventuran como pioneros por rutas laterales.

Existen fragmentos de ADN no incorporados a cromosomas, que flotan libremente y se multiplican en el contenido líquido de las células, en especial de las bacterianas. Circulan bajo diferentes nombres, como viroides o plásmidos. Un plásmido es todavía más pequeño que un virus y normalmente consta de sólo unos pocos genes. Algunos son capaces de acoplarse sin costuras a un cromosoma. Tan lisa es la zona de incorporación que no puede verse la unión: el plásmido no se distingue de cualquier otra parte del cromosoma. Más tarde, los mismos plásmidos pueden volver a separarse. Esta capacidad del ADN de cortar y pegar, de saltar fuera y dentro de los cromosomas sin la menor vacilación, es uno de los hechos más emocionantes que han salido a la luz desde que se publicó la primera edición de este libro. Las pruebas actuales de los plásmidos pueden considerarse, en efecto, como una hermosa confirmación de las conjeturas que se formulan al final de la página 182 (que en su momento parecían algo arriesgadas). Desde ciertos puntos de vista no importa si estos fragmentos se originaron como parásitos invasores o como rebeldes escindidos. Su comportamiento probable será el mismo. Para insistir en este punto, voy a hablar de un fragmento desligado.

Consideremos un fragmento rebelde de ADN humano, capaz de separarse de su propio cromosoma, flotando libremente en la célula, quizás multiplicándose para dar varias copias y, después, uniéndose a otro cromosoma. ¿Qué rutas alternativas no ortodoxas hacia el futuro podría explotar un replicador rebelde de esta naturaleza? Constantemente nos desprendemos de células de nuestra piel; buena parte del polvo de nuestras casas está formado por estas células desprendidas. Por eso podemos estar respirando en todo momento células de otra persona. Si desliza un dedo por la parte interior de su boca, arrastrará cientos de células vivas. Los besos y las caricias de los amantes transfieren multitud de células en ambas direcciones. Un fragmento de ADN rebelde cabalgaría sobre cualquiera de ellas. Si los genes pueden descubrir una grieta en una vía no ortodoxa a través de otro cuerpo (junto, o en lugar de la ruta ortodoxa del espermatozoide y el óvulo), podemos esperar que la selección natural favorezca su oportunismo y lo mejore. En cuanto a los métodos precisos que utilizan, no hay razón para suponer que fueran diferentes a las maquinaciones de los virus, demasiado predecibles para un teórico del gen egoísta/fenotipo extendido.

Cuando tenemos un resfriado o un catarro, solemos pensar que los síntomas son productos secundarios de la actividad de los virus. Pero en algunos casos parece más probable que hayan sido deliberadamente causados por el virus para ayudarse a viajar de uno a otro huésped. No contento con ser expulsado a la atmósfera en el curso de la respiración, el virus nos hace estornudar para salir expulsado de manera explosiva. El virus de la rabia se transmite a través de la saliva cuando un animal muerde a otro. En los perros. uno de los síntomas de la enfermedad es que un animal normalmente tranquilo y amistoso se vuelve feroz y mordedor, echando espuma por la boca. Además, en lugar de quedarse dentro de un radio de un par de kilómetros de su casa, como los perros normales, se vuelve un incansable vagabundo, propagando el virus a gran distancia. Incluso se ha sugerido que el conocido síntoma hidrofóbico estimula al perro a expulsar de su boca la espuma húmeda, y con ella el virus. No sé de ninguna prueba directa de que las enfermedades de transmisión sexual incrementen la libido de quien las padece, aunque supongo que valdría la pena estudiarlo. Es cierto que al menos hay un presunto afrodisíaco, que se obtiene de las cantáridas, del que se dice que actúa induciendo una comezón... y provocar comezón en las personas es precisamente algo que los virus hacen muy bien.

Lo importante al comparar el ADN humano rebelde y los virus parásitos es que realmente no existe diferencia significativa alguna entre ellos. Los virus pueden muy bien haberse originado como colecciones de genes desprendidos. Si se quiere establecer alguna distinción, tendrá que ser entre genes que pasan de un cuerpo a otro a través de la ruta ortodoxa de los espermatozoides o los óvulos, y genes que lo hacen por medio de rutas no ortodoxas, «laterales». Ambas clases pueden incluir genes que se originaron como genes cromosómicos «propios». Y ambas clases pueden incluir también genes que se originaron como parásitos invasores externos. O quizás, todos los genes cromosómicos «propios» deberían considerarse como parásitos mutuos. La diferencia importante entre ambas clases de genes radica en las circunstancias divergentes a partir de las cuales se benefician en el futuro. Un gen del virus del resfriado y un gen cromosómico humano desprendido están mutuamente de acuerdo en «querer» que el huésped estornude. Un gen cromosómico ortodoxo y un virus de transmisión venérea están de acuerdo en desear que el huésped copule. Resulta una idea intrigante el deseo de ambos de que el huésped sea sexualmente atractivo. Más aún: un gen cromosómico ortodoxo y un virus que se transmite en el interior del huevo del huésped estarán de acuerdo en desear que éste tenga éxito, no sólo en el cortejo sino en cualquier otro aspecto de su vida; que sea un progenitor cariñoso y que incluso llegue a ser abuelo.

Las larvas de tricóptero viven dentro de sus cápsulas y los parásitos que hemos visto hasta ahora lo hacen en el interior de sus huéspedes. Los genes, pues, están físicamente próximos a sus efectos fenotípicos extendidos, tanto como lo están, por lo general, a sus fenotipos convencionales. Pero los genes pueden actuar a distancia; los fenotipos ampliados pueden extenderse a una gran distancia. Una de las mayores que se me ocurren abarca todo un lago. Lo mismo que la tela de araña o la cápsula de un tricóptero, la presa de un castor se cuenta entre las auténticas maravillas del mundo. No está del todo claro cuál es su propósito darwiniano, pero ciertamente alguno debe haber para que los castores dediquen tanto tiempo y energía a construirla. El lago creado sirve, probablemente, para proteger la vivienda contra los depredadores. Proporciona también un canal navegable adecuado para viajar y transportar troncos. Los castores aprovechan la flotación por el mismo motivo que las compañías madereras canadienses usan los ríos y los comerciantes carboneros del siglo XVIII utilizaban los canales. Cualesquiera que sean sus beneficios, la presa de un castor es un elemento llamativo y característico del paisaje. Es un fenotipo, no menor que los dientes o la cola del animal, y ha evolucionado bajo la influencia de la selección darwiniana. Ésta tiene que haber obligado a actuar la variación genética. Aquí la elección debe haber sido entre lagos buenos y menos buenos. La selección favoreció aquellos genes de castor que construían buenos lagos para el transporte de árboles, lo mismo que favorecía los genes que hacían dientes para cortarlos. Los lagos de castores son efectos fenotípicos extendidos de los genes del animal, cuyo largo brazo puede alcanzar varios cientos de metros. ¡Realmente una gran distancia! Los parásitos tampoco necesitan vivir dentro de los huéspedes: sus genes pueden expresarse en éstos y a distancia. El polluelo de cuco no vive dentro de petirrojos u otros pájaros, no chupa su sangre ni devora sus tejidos, pero no tenemos inconveniente en clasificarlo como parásito. Las adaptaciones del cuco para manipular el comportamiento de los padres adoptivos puede considerarse una acción fenotípica extendida a distancia por parte de los genes del cuco.

Es fácil sentir simpatía hacia los padres adoptivos, embaucados para incubar los huevos del cuco. Los coleccionistas humanos de huevos también han sido engañados por el gran parecido de los huevos del cuco a los de la especie parasitada (diferentes razas de hembras de cuco se especializan en diferentes especies huéspedes). Lo que resulta difícil de entender es la conducta que, más avanzada la estación, presentan los padres adoptivos hacia los jóvenes cucos, casi ya cubiertos del todo por plumas. Estos son mucho más grandes que sus «padres»; a veces incluso de manera grotesca. Estoy viendo la fotografía de un acentor común adulto, tan pequeño en comparación con su monstruoso hijo adoptivo que tiene que subirse a su espalda para poder alimentarle. Aquí sentimos menos simpatía por el huésped. Nos maravillamos ante su estupidez, de su credulidad. Cualquier tonto sería capaz de ver que hay algo que no funciona con un hijo como éste. Creo que los polluelos de cuco deben hacer algo más que simplemente «embaucar» a sus huéspedes, algo más que pretender ser lo que no son. Parece que actúan sobre el sistema nervioso del huésped como una droga que provoca hábito. No resulta tan difícil de comprender, incluso para quienes no tienen experiencia con estas drogas. Un hombre puede excitarse, e incluso tener una erección, a causa de la fotografía impresa de un cuerpo femenino. No se le ha «embaucado» haciéndole creer que el modelo impreso es realmente una mujer. Sabe que únicamente está mirando tinta sobre un papel, pero su sistema nervioso responde como lo haría ante una mujer real. Podemos encontrar irresistible la atracción de un miembro concreto del sexo opuesto, aunque el mejor juicio de nuestra conciencia nos diga que la relación con esa persona no interesa a largo plazo. Lo mismo puede suceder con la atracción irresistible de determinados alimentos nocivos.

Es probable que el acentor no sea consciente de sus intereses a largo plazo; así que resulta más fácil entender que su sistema nervioso pueda encontrar irresistibles ciertos tipos de estimulación. El fondo rojo del pico abierto de un polluelo de cuco resulta tan tentador que no es extraño que los ornitólogos observen un pájaro alimentando a uno de ellos que está en un nido ¡que no es el suyo! Puede darse el caso de un pájaro en vuelo hacia su nido llevando comida para sus polluelos. De pronto, ve la enorme mancha roja de la boca de un polluelo de cuco en el nido de cualquier otra especie. Se desvía hasta allí y deposita en la boca del parásito el alimento que iba destinado a sus propios hijos. La «teoría de la irresistibilidad» cuadra perfectamente con los puntos de vista de antiguos ornitólogos alemanes, que afirmaban que los padres adoptivos se comportaban como «adictos» y que los nidos con cucos eran su «vicio». Hay que admitir que este tipo de lenguaje no disfruta demasiado de los favores de algunos experimentadores modernos. Pero no hay duda de que si suponemos que la boca abierta del cuco constituye un poderoso superestímulo parecido a una droga, resulta mucho más fácil explicar el hecho. Es mucho más sencillo sentir lástima por el comportamiento del diminuto padre adoptivo encaramado al dorso del hijo. No es estúpido. «Embaucado» no es la palabra correcta. Es que su sistema nervioso está siendo controlado de manera tan irresistible como si fuera un indefenso drogadicto, o como si el cuco fuera un científico colocando electrodos en su cerebro.

Pero aun sintiendo más simpatía personal hacia los manipulados progenitores adoptivos, seguiremos preguntándonos por qué la selección natural permitió a los cucos semejante comportamiento. ¿Por qué no han desarrollado los sistemas nerviosos de los huéspedes resistencia hacia la droga de la garganta roja? Puede que la selección no haya tenido todavía tiempo de obrar. Quizás los cucos han comenzado a parasitar a sus huéspedes actuales hace pocos siglos, y dentro de otros pocos se verán obligados a hacerlo con otras especies. Existen pruebas que apoyan esta teoría. Pero no puedo por menos de sentir que debe haber algo más.

En la «carrera armamentista» evolutiva entre cucos y las especies hospedantes hay algo así como una deslealtad incorporada cuyo resultado es un coste desigual de los fracasos. Cada polluelo de cuco desciende de una larga línea de otros ancestrales, cada uno de los cuales debe haber logrado manipular a sus padres adoptivos. Cualquiera de ellos que perdiera, aunque fuera de modo transitorio, el dominio sobre su huésped habría muerto. Pero cada padre adoptivo desciende de una larga línea de antepasados, muchos de los cuales no vieron un cuco en su vida. Y aquellos que tuvieron uno en el nido pudieron sucumbir o sobrevivir y criar a la siguiente temporada una nueva nidada. Lo importante es que existe una asimetría en el coste del fracaso. Los genes para el fracaso ante el sometimiento a esclavitud por un cuco pueden transmitirse fácilmente de una generación a otra de petirrojos o acentores comunes. Los genes para el fracaso al esclavizar a padres adoptivos no pueden transmitirse a lo largo de las generaciones de cucos. Esto es lo que quiero decir con «deslealtad incorporada» y «asimetría en el coste del fracaso». Todo esto se resume en una de las fábulas de Esopo: «El conejo corre más deprisa que el zorro porque lo hace para salvar su vida, mientras que el zorro sólo corre detrás de la comida». Mi colega John Krebs y yo lo hemos designado con el nombre de «principio de vida/comida».

Debido al principio de vida/comida, los animales pueden comportarse a veces de un modo que no redunde en su propio interés, al ser manipulados por otro. En realidad, y en cierto sentido, sí están actuando por su propio bien: lo esencial del principio de vida/comida es que teóricamente podrían resistir la manipulación, pero que hacerlo sería demasiado costoso. Quizás para resistir la manipulación del cuco se necesiten unos ojos o un cerebro más grandes, lo que supondría costes adicionales. Los rivales con tendencia genética a resistir la manipulación tendrían menos éxito a la hora de transmitir sus genes, debido al coste económico de su resistencia.

Pero otra vez volvemos a mirar la vida desde el punto de vista del organismo individual más que desde el de sus genes. Cuando hablábamos de tremátodos y caracoles, nos acostumbramos a la idea de que los genes de un parásito podrían tener efectos fenotípicos sobre el cuerpo del huésped, exactamente de la misma manera que los genes de cualquier animal ejercen efectos fenotípicos sobre su «propio» cuerpo. Demostramos que la mera idea de un cuerpo «propio» era un supuesto intencionado. En un sentido, todos los genes de un cuerpo son genes «parásitos», los llamemos o no a todos ellos genes «propios» del cuerpo. Los cucos salieron a colación como ejemplo de parásitos que no viven en el interior del cuerpo de sus huéspedes. Manipulan a éstos en gran medida del mismo modo que los parásitos internos y, como hemos visto, dichas manipulaciones pueden ser tan poderosas e irresistibles como cualquier hormona o droga interna. Como en el caso de los endoparásitos, deberíamos repetir todo el tema en términos de genes y fenotipos extendidos.

En la carrera armamentista evolutiva entre cucos y huéspedes, los avances en cada uno de las bandos adoptaron la forma de mutaciones genéticas surgidas y favorecidas por la selección natural. Aunque se trate del pico abierto del cuco actuando como una droga sobre el sistema nervioso del huésped, debió originarse como una mutación genética. Ésta actuó a través de su efecto; por ejemplo, sobre el color y la forma del interior de la garganta del joven cuco. Pero éste no fue ni siquiera su efecto más inmediato. Su efecto más inmediato tuvo lugar sobre sucesos químicos invisibles dentro de las células. El propio efecto de los genes sobre el color y la forma del interior de la garganta es indirecto. Y esto es lo importante. El efecto de los genes del cuco sobre el comportamiento de los padres adoptivos es sólo un poco más indirecto. Exactamente en el mismo sentido en que podemos hablar de que los genes del cuco tienen efectos (fenotípicos) sobre el color y la forma de la garganta, podemos decir que tienen también efectos (fenotípicos extendidos) sobre el comportamiento del huésped. Los genes parásitos pueden tener efectos sobre los cuerpos huéspedes no sólo cuando el parásito vive dentro del huésped, donde puede manipular con medios químicos directos, sino cuando está lejos de él manipulándole a distancia. Efectivamente, como vamos a ver, incluso las influencias químicas pueden actuar fuera del cuerpo.

Los cucos son seres notables y muy instructivos. Pero los insectos pueden superar casi cualquiera de los milagros que se producen entre los vertebrados. Tienen la ventaja de ser muchos más; mi colega Robert May ha observado acertadamente que «con una buena aproximación, todas las especies son insectos». Los insectos «cucos» no pueden ni contarse, ya que son muy numerosos y su hábito se ha reinventado con mucha frecuencia.

Algunos de los ejemplos que vamos a ver van más allá del familiar parasitismo de los cucos y satisfacen las mayores fantasías que puedan haberse imaginado en The Extended Phenotype.

Un cuco deposita su huevo y desaparece. Algunas hormigas cuco hembras hacen sentir su presencia de un modo mucho más notable. No suelo emplear muy a menudo los nombres latinos, pero Buthriomyrmex regicidus y B. decapitans hacen historia. Ambas especies son parásitas de otras hormigas. En todas las hormigas, por supuesto, las crías no son alimentadas normalmente por los padres, sino por las obreras; así pues, son éstas a las que el «cuco» debe manipular. Un primer paso de gran utilidad es disponer de la propia madre de las obreras, con su tendencia a producir una progenie competidora. En estas dos especies, sólo la reina parásita se introduce en el nido de otra especie. Busca allí la reina huésped y se monta sobre su dorso mientras lleva a cabo tranquilamente, citando la macabra descripción de Edward Wilson, «el único acto para el que está notablemente especializada: cortar lentamente la cabeza de su víctima». La asesina es entonces adoptada por las obreras huérfanas, que atienden sus huevos y larvas. Algunas de ellas se transforman a su vez en obreras, que poco a poco sustituyen a las de la especie original en el nido. Otras se transforman en reinas y escapan para buscar nuevos pastos y reales cabezas aún sin cortar.

Pero cortar cabezas ya es un cierto trabajo y los parásitos no están acostumbrados a trabajar si pueden obligar a otros a hacerlo por ellos. Mi personaje favorito en The Insect Societies, de Wilson, es Monomorium santschii. Esta especie ha perdido la casta de las obreras en el curso de la evolución. Las huéspedes realizan por ellas todo el trabajo. Por orden de la reina parásita invasora, se encargan de la muerte o el asesinato de su propia madre. La usurpadora no necesita utilizar sus mandíbulas. Utiliza el control de la mente. El modo como lo hace es un misterio; probablemente emplea un producto químico, pues los sistemas nerviosos de las hormigas suelen estar muy sintonizados con ellos. Si su arma es, en efecto, de naturaleza química, constituye una droga más insidiosa que ninguna otra conocida por la ciencia. Pensemos en cómo actúa. Invade el cerebro de la obrera, toma las riendas de sus músculos, la retrae de sus profundamente inculcadas tareas y la vuelve contra su propia madre. Para las hormigas, el matricidio es un acto de locura genética especial y desde luego la droga que las impulsa a hacerlo debe ser formidable. En el mundo del fenotipo extendido no hay que preguntar cómo beneficia la conducta del animal a sus genes, sino a qué genes beneficia.

No resulta sorprendente que las hormigas sean explotadas por los parásitos, no sólo por otras hormigas, sino por un asombroso zoológico de parásitos especialistas. Las hormigas obreras arrastran un rico flujo de alimentos desde una amplia zona de recogida hasta el almacén central, blanco de los pedigüeños. Las hormigas son también buenos agentes de vigilancia: están bien armados y son numerosos. Podría considerarse que los áfidos del capítulo X pagan con néctar el alquiler de guardaespaldas profesionales.

Ciertas especies de mariposas viven su fase de oruga dentro de hormigueros. Algunas son auténticos saqueadores. Otras ofrecen algo a las hormigas a cambio de protección. A menudo van literalmente erizadas de armas para manipular a los protectores. La oruga de una mariposa llamada Thisbe irenea posee un órgano productor de sonido en la cabeza para llamar a las hormigas y un par de canalones telescópicos cerca del extremo posterior, por los que exuda un néctar. Sobre los hombros lleva otro par de toberas que lanzan andanadas más sutiles. Parece que su secreción no es alimentaria, sino una poción volátil de enorme impacto sobre el comportamiento de las hormigas. La que cae bajo su influencia comienza a brincar en el aire. Sus mandíbulas se abren, se vuelve agresiva y ataca con mucha más facilidad de lo normal, mordiendo y picando cualquier objeto en movimiento. Excepto, curiosamente, a la oruga responsable de esos efectos. Además, una hormiga sometida a esta influencia puede entrar en un estado llamado de «fijación» en el que se vuelve inseparable de su oruga durante un período de varios días. Lo mismo que los áfidos, pues, la oruga emplea hormigas como guardaespaldas, aunque lo hace mejor. Mientras que los áfidos dependen de la agresión normal de las hormigas contra los predadores, la oruga administra una droga que incrementa esa agresión y que parece también crear el hábito de dicha fijación.

He elegido ejemplos extremos. Pero de mil maneras más modestas, la naturaleza rebosa de animales y plantas que manipulan a otros seres de la misma o diferente especie. En todos los casos en que la selección natural ha favorecido genes para la manipulación, es admisible hablar de que esos mismos genes tienen efectos (fenotípicos extendidos) sobre el cuerpo del organismo manipulado. No importa en qué cuerpo resida físicamente un gen. El blanco de su manipulación puede ser el mismo cuerpo u otro distinto. La selección natural favorece aquellos genes que manipulan el mundo para garantizar su propia propagación. Esto conduce a lo que he llamado el Teorema Central del Fenotipo Extendido: La conducta de un animal tiende a maximizar la supervivencia de los genes «para» dicha conducta, estén o no esos genes en el cuerpo del animal particular que la practica. Lo escribí dentro del contexto del comportamiento animal; pero el teorema podría aplicarse, desde luego, al color, al tamaño, a la forma o a cualquier otra característica.

Por último, es tiempo de volver al problema con el que comenzamos: la tensión entre el organismo individual y el gen como candidatos rivales para el papel principal en la selección natural. En anteriores capítulos supuse que no había problema alguno porque la reproducción individual era equivalente a la supervivencia del gen. Supuse que era lo mismo afirmar que «el organismo trabaja para propagar todos sus genes» o que «los genes trabajan para forzar una sucesión de organismos que les propaguen». Me parecían dos formas equivalentes de expresar lo mismo y que las palabras a elegir eran una mera cuestión de gusto. Pero, de algún modo, la tensión permanece.

Una manera de resolver todo el asunto es utilizar los términos «replicador» y «vehículo». Las unidades fundamentales de selección natural, las cosas básicas que sobreviven o no, que forman linajes de copias idénticas con mutaciones aleatorias ocasionales, se llaman replicadores. Las moléculas de ADN son replicadores. Por razones a las que llegaremos, se reunieron en grandes máquinas comunales de supervivencia o «vehículos». Los vehículos que mejor conocemos son los cuerpos individuales, como el nuestro propio. Un cuerpo, por lo tanto, no es un replicador, sino un vehículo. Debo hacer hincapié en esto, pues es un aspecto que se ha visto mal interpretado. Los vehículos no se replican a sí mismos; trabajan para propagar sus replicadores. Los replicadores no se comportan, no perciben el mundo, no capturan presas ni huyen ante los depredadores; construyen vehículos que hacen todas esas cosas. Para gran parte de sus objetivos, conviene a los biólogos centrar su atención al nivel del vehículo. Para otros, les es mejor hacerlo al nivel del replicador. El gen y el organismo individual no son rivales por un mismo papel estelar en la obra darwiniana. Están contratados para papeles diferentes, complementarios y en muchos aspectos igualmente importantes: el de replicador y el de vehículo.

La terminología replicador/vehículo es útil en varios sentidos. Por ejemplo, aclara la controversia sobre el nivel al que actúa la selección natural. Superficialmente puede parecer lógico situar la «selección individual» sobre una especie de escala de niveles de selección, a mitad de camino entre la «selección génica» defendida en el capítulo III y la «selección de grupo» criticada en el capítulo VII. La «selección individual» parece situarse vagamente a medio camino entre ambos extremos y muchos biólogos y filósofos se han dejado seducir por esta vía fácil y la han tratado como tal. Pero ahora podemos ver que no es tan fácil. Podemos ver que el organismo y el grupo de organismos son auténticos rivales para desempeñar el papel de vehículo en la historia, pero que ninguno de ellos es candidato al papel de replicador. La controversia entre «selección individual» y «selección de grupo» es una controversia real entre vehículos alternativos. La controversia entre selección individual y selección génica no es tal, pues el gen y el organismo son candidatos a papeles diferentes y complementarios en la historia: el de replicador y el de vehículo.

La rivalidad entre el organismo individual y el grupo de organismos por el papel de vehículo, al ser real, es susceptible de resolución. La manera es, en mi opinión, la victoria decisiva para el organismo individual. El grupo es una entidad demasiado insípida. Un rebaño de ciervos, una familia de leones o una manada de lobos tienen una cierta coherencia rudimentaria, y unidad de propósito. Pero esto no es nada en comparación con la coherencia y la unidad de propósito del cuerpo de un león, un lobo o un ciervo. Que esto es así es algo ampliamente aceptado, pero ¿por qué es verdad? De nuevo pueden sernos útiles los fenotipos extendidos y los parásitos.

Hemos visto que cuando los genes de un parásito colaboran entre sí, pero oponiéndose a los genes del huésped (que cooperan todos juntos con cada uno), se debe a que las dos series de genes tienen diferentes métodos de abandonar el vehículo compartido, el cuerpo del huésped. Los genes del caracol abandonan dicho vehículo a través de los espermatozoides y los óvulos. Puesto que todos los genes de caracol apuestan por igual a cada espermatozoide y cada óvulo, y puesto que todos participan en la misma meiosis imparcial, todos ellos cooperan para el bien común y, en consecuencia, tienden a hacer del cuerpo del caracol un vehículo coherente y con un propósito definido.

La razón real por la que un tremátodo se diferencia del huésped, la razón por la que no fusiona sus propósitos y su identidad con los propósitos y la identidad del huésped, es que los genes del tremátodo no comparten con los del caracol el método para abandonar el vehículo común, y tampoco comparten la lotería meiótica del caracol; tienen la suya propia. Por lo tanto, hasta ese punto y sólo hasta ahí, los dos vehículos permanecen separados como un caracol y un tremátodo reconocible como distinto en su interior. Si los genes del tremátodo se transmitieran con los óvulos y los espermatozoides del caracol, ambos cuerpos se habrían transformado en una única carne. Puede que no fuéramos siquiera capaces de decir que antes hubo allí dos vehículos.

Los organismos individuales «aislados», como nosotros mismos, constituyen la materialización última de muchas de esas fusiones. El grupo de organismos —la bandada de aves, la manada de lobos—no se fusiona en un único vehículo debido, precisamente, a que los genes de la bandada o de la manada no comparten un método común de salir del vehículo presente. Para estar seguros, las manadas deben generar manadas hijas, pero los genes de la manada parental no pasan a estas últimas en un único recipiente en el que todos participen por igual. No todos los genes de una manada de lobos pasarán en el futuro por los mismos sucesos. Uno puede fomentar su propio bienestar futuro favoreciendo a su propio lobo individual a expensas de otros lobos. Por consiguiente, un individuo lobo es un vehículo digno de tal nombre. La manada no lo es. Hablando genéticamente, la razón de esto es que todas las células, salvo seis, tienen en el cuerpo del lobo los mismos genes, mientras que en lo que respecta a esas seis células, todos los genes tienen las mismas posibilidades de estar en cualquiera de ellas. Pero las células de una manada de lobos no tienen los mismos genes, ni tienen las mismas posibilidades de estar en las células de las submanadas que se originen. Tienen todas las de ganar luchando contra los rivales en otros cuerpos de lobo (aunque en realidad la manada es, probablemente, un grupo familiar lo que mitigará las disputas).

La cualidad esencial que necesita una entidad para convertirse en un eficaz vehículo de genes, es la siguiente. Debe tener un canal de salida imparcial hacia el futuro para todos los genes que lleva dentro de sí. Esto es cierto en un lobo individual. El canal es el delgado chorro de espermatozoides u óvulos que fabrica durante la meiosis. No es cierto para la manada. Los genes tienen algo que ganar en la promoción egoísta del bienestar de sus propios cuerpos individuales a expensas de otros genes de la manada de lobos. Una colmena, al enjambrar, parece reproducirse mediante gemación amplia, como una manada de lobos. Pero si observamos con mayor cuidado, vemos que, en lo que respecta a los genes, su destino está ampliamente compartido. El futuro de los genes del enjambre se aloja, al menos en gran medida, en los ovarios de una reina. He aquí por qué —otra manera de expresar el mensaje de anteriores capítulos— la colonia de abejas se parece y se comporta como un vehículo aislado y auténticamente integrado.

En cualquier lugar donde encontremos esa vida, va realmente reunida en vehículos discretos y de propósito individual, tal como lobos y colmenas. Pero la doctrina del fenotipo extendido nos ha enseñado que no es necesario que así sea. Fundamentalmente, todo lo que tenemos derecho a esperar de nuestra teoría es un campo de batalla de replicadores dando empellones, maniobrando, luchando por un futuro en el futuro genético. Las armas con las que luchan son efectos fenotípicos, efectos químicos inicialmente directos en células, pero también, eventualmente, plumas y colmillos; e incluso efectos más remotos. Es indudable que estos efectos fenotípicos se han agrupado en vehículos discretos, cada uno con sus genes disciplinados y ordenados ante la perspectiva de un embotellamiento de espermatozoides y óvulos que se proyectan en túnel hacia el futuro. Pero no se trata de un hecho que hay que dar por sentado. Es un hecho a cuestionar y a admirar por derecho propio. ¿Por qué se agrupan en grandes vehículos, cada uno con una ruta genética de salida? ¿Por qué los genes eligen agruparse y crear un cuerpo grande para sí mismos donde vivir? En The Extended Phenotype intento elaborar una respuesta a este difícil problema. Aquí sólo puedo esbozar una parte de dicha respuesta; aunque, como podría esperarse después de siete años, ahora puedo ir un poco más allá.

Dividiré la cuestión en tres partes. ¿Por qué los genes se agrupan en células? ¿Por qué las células se agrupan en los cuerpos pluricelulares? ¿Y por qué los cuerpos adoptan lo que llamaré un ciclo vital de «embotellado»?

Primero, por tanto, ¿por qué los genes se agrupan en células? ¿Por qué esos antiguos replicadores renuncian a la desdeñosa libertad del caldo primigenio y se enjambran en enormes colonias? ¿Por qué cooperan? Podemos tener parte de la respuesta viendo cómo las modernas moléculas de ADN cooperan en las plantas químicas que son las células vivas. Las moléculas de ADN fabrican proteínas. Éstas, a su vez, actúan como enzimas, catalizando reacciones químicas particulares. A menudo una única reacción química no basta sintetizar un producto final útil. En una planta farmacéutica humana, la síntesis de un producto químico útil requiere una línea de producción. El producto inicial no puede transformarse directamente en el producto final deseado. Hay que sintetizar en estricta secuencia una serie de pasos intermedios. Gran parte de la inventiva de un investigador químico se destina al descubrimiento de vías de intermediarios factibles entre los productos químicos de salida y los productos finales deseados. De la misma manera, no es habitual que los enzimas aislados de una célula viva consigan por sí mismos la síntesis de un producto final útil a partir de un producto químico dado. Se necesita toda una serie de enzimas, uno para catalizar la transformación de la materia prima en el primer intermediario, otro para catalizar la transformación del primer intermediario en el segundo, y así sucesivamente.

Cada uno de estos enzimas es fabricado por un gen. Si se precisa una secuencia de seis enzimas para una ruta de síntesis particular, deben estar presentes los seis necesarios genes para fabricarlos. Pero es muy probable que existan dos vías alternativas para llegar al mismo producto final, necesitando cada una seis enzimas diferentes y sin nada que elegir fuera de las dos. Este tipo de cosas se producen en las fábricas químicas. La vía elegida puede ser un accidente histórico o una cuestión más o menos elaborada, planificada por un químico. En la química de la naturaleza, la elección no será nunca, como es evidente, deliberada. En lugar de ello, se producirá por selección natural. Pero, ¿cómo puede ver la selección natural que ambas vías no están mezcladas y que emergen grupos cooperantes de genes compatibles? Casi de igual modo como sugerí con mi analogía de los remeros alemanes e ingleses (capítulo V). Lo importante es que un gen para una etapa en la vía 1 prosperará en presencia de genes para otras etapas de la vía 1, pero no en presencia de genes de la vía 2. Si la población ya está dominada por genes para la vía 1, la selección favorecerá otros genes para la vía 1 y penalizará los genes para la vía 2. Y viceversa. Por tentador que sea, resulta positivamente erróneo hablar de que los genes para seis enzimas de la vía 2 son seleccionados «como un grupo». Cada uno es seleccionado como un gen egoísta separado, pero sólo prospera en presencia del apropiado conjunto de otros genes.

Actualmente, la cooperación entre genes se realiza en el interior de las células. Debe haber comenzado como una cooperación rudimentaria entre moléculas autorreplicadoras en el caldo primordial (o cualquier medio primigenio que hubiera). Quizás las paredes celulares surgieron como un dispositivo para mantener juntos productos químicos útiles y evitar su dispersión. Muchas de las reacciones químicas en la célula continúan en realidad en la fábrica de membranas; una membrana actúa como una cinta transportadora combinada con una rejilla portatubos de ensayos. Pero la cooperación entre genes no se limita a la bioquímica celular. Las células se unieron (o dejaron de separarse después de la división celular) para formar cuerpos pluricelulares.

Esto nos lleva a la segunda de mis tres cuestiones. ¿Por qué se unieron las células, por qué los pesados robots? He aquí otra cuestión sobre cooperación. Pero el dominio se ha desplazado desde el mundo de las moléculas a una escala mucho mayor. Los cuerpos pluricelulares son demasiado grandes para el microscopio. Pueden convertirse incluso en elefantes o ballenas. Ser grande no es necesariamente bueno: la mayoría de los organismos son bacterias y muy pocos son elefantes. Pero cuando se han completado las vías de hacer vida que están abiertas a los pequeños organismos, aún quedan prósperos seres vivos para construir organismos mayores. Los organismos grandes, por ejemplo, pueden devorar a los más pequeños y evitar ser devorados por ellos.

La ventaja de estar en un club de células no se limita al tamaño. Cada una de ellas puede especializarse, volviéndose más eficiente y llevando a cabo una tarea particular. Las células especialistas sirven a otras células del club y ellas mismas se benefician de la eficiencia de otras especialistas. Si hay muchas, algunas pueden especializarse como sensores para detectar la presa; otras como nervios para transmitir el mensaje; otras como urticantes para paralizar a su víctima; las musculares para mover los tentáculos que la capturan; las secretoras para disolverla y otras más para absorber los jugos resultantes. No debemos olvidar que, al menos en cuerpos modernos, como el nuestro, las células son un clon. Todas contienen los mismos genes, aunque distintos genes determinen la transformación en los distintos especialistas. Los genes de cada tipo celular benefician directamente a sus propias copias en la minoría de células especializadas en la reproducción, las de la línea germinal inmortal.

Así que, ahora, la tercera cuestión. ¿Por qué los cuerpos participan en el ciclo vital «embotellado»? Para empezar ¿qué entiendo por embotellamiento? No importa las células que pueda haber en el cuerpo de un elefante, éste comenzó su vida como una única célula, un óvulo fertilizado. Este óvulo es un estrecho cuello de botella que durante el desarrollo embrionario se ensancha hasta producir los trillones de células de un elefante adulto. Y no importa cuántas células haya ni cuántos tipos especializados cooperen para llevar a cabo la inimaginablemente compleja tarea de hacer funcionar a un elefante adulto: los esfuerzos de todas esas células convergen hacia el objetivo final de volver a producir células aisladas, espermatozoides u óvulos. El elefante no sólo tiene su principio en un célula aislada, un óvulo fertilizado. Su final, y eso significa su objetivo o producto final, es la producción de células sencillas, óvulos fertilizados de la siguiente generación. El ciclo vital del enorme y voluminoso elefante comienza y finaliza en un punto estrecho de un embotellamiento, un cuello de botella. Esto es característico del ciclo vital de todos los animales pluricelulares y de la mayoría de las plantas. ¿Por qué? ¿Qué significa? No podemos responder sin analizar cómo sería la vida sin ello.

Es útil imaginarse dos especies hipotéticas de algas llamadas fuco-botella y alga-ostentosa. La segunda crece en el mar en forma de series de ramas amorfas. De vez en cuando la rama se rompe y el agua la arrastra. Las roturas pueden producirse en cualquier punto de la planta y los fragmentos pueden ser grandes o pequeños. Lo mismo que sucede con los esquejes en un jardín, son capaces de crecer iguales a la planta original. Deshacerse de porciones de la propia planta es el método de reproducción de la especie. Como podrá observar, no es realmente distinto de su método de crecimiento, excepto en que las partes que crecen se separan físicamente del resto.

Fuco-botella tiene el mismo aspecto y crece de la misma forma desordenada. Sin embargo, hay una diferencia crucial. Se reproduce desprendiéndose de esporas unicelulares que van a la deriva por el mar y dan lugar a nuevas plantas. Estas esporas son células iguales a cualquier otra de la planta. Como en el caso de alga-ostentosa, no hay nada de sexo. Las hijas de una planta constan de células clones de las células de la planta madre. La única diferencia entre las dos especies es que alga-ostentosa se reproduce mediante porciones de sí misma con un número indeterminado de células, mientras que fuco-botella lo hace con porciones unicelulares.

Imaginándonos estas dos especies de plantas hemos acertado en una de las diferencias esenciales entre un ciclo de vida embotellado y otro que no lo es. Fuco-botella se reproduce exprimiéndose cada generación a través de un cuello de botella de una única célula. Alga-ostentosa lo hace partiéndose en dos. Difícilmente puede decirse que posee una «generación» discreta o que consiste en «organismos» discretos. ¿Qué pasa con fuco-botella? Voy a decirlo, pero ya podemos ver algún indicio de por dónde irá la respuesta.

¿No parece que fuco-botella tiene un sentido «organimista», más discreto? Como hemos visto, alga-ostentosa se reproduce del mismo modo que crece. En realidad apenas se reproduce. Por el contrario, fuco-botella hace una clara distinción entre crecimiento y reproducción. Hemos acertado con la diferencia, pero ¿cuál es? ¿Qué significado tiene? ¿Cuál es su importancia? He meditado mucho tiempo en ello y creo conocer la respuesta (de hecho, que fue más difícil deducir que había una pregunta que encontrar la respuesta). Dicha respuesta puede dividirse en tres partes; las dos primeras conciernen a la relación entre evolución y desarrollo embrionario.

En primer lugar, pensemos en el problema del desarrollo de un órgano complejo a partir de uno simple. No es necesario limitarse a las plantas; a este nivel de argumentación puede que sea mejor pasar a los animales, porque poseen órganos evidentemente más complejos. Tampoco hay que pensar en términos de sexo; reproducción sexual versus asexual sería salirse del tema. Podemos imaginar a nuestros animales reproduciéndose mediante el envío de esporas asexuales, células sencillas que, mutaciones aparte, son todas genéticamente idénticas entre sí y a las restantes células del cuerpo.

Los complejos órganos de un animal avanzado, como un ser humano o una cochinilla, han evolucionado mediante pasos graduales a partir de órganos más sencillos de sus antepasados. Pero esos órganos ancestrales no se transformaron, literalmente, en los órganos descendientes, como un herrero convierte una espada en una reja de arado. No sólo no lo hicieron. Quiero insistir en que en la mayoría de los casos no pudieron hacerlo. Sólo hay una cantidad limitada de cambio a alcanzar por transformación directa al estilo de «la espada y la reja de arado». Los cambios realmente radicales se consiguen sólo «retrocediendo a la mesa de dibujo», volviendo al diseño previo y comenzando de nuevo. Cuando los ingenieros vuelven a la mesa de dibujo y crean un nuevo diseño no se desprenden, necesariamente, de las ideas del diseño antiguo. Pero lo que no intentan hacer es deformar literalmente el antiguo objeto físico en otro nuevo. El antiguo está demasiado entroncado en la historia. Puede que se consiga, a base de golpes, convertir la espada en la reja de un arado, pero intentemos transformar en la herrería un motor de hélice en otro de propulsión a chorro. No se puede. Habrá que dejar el de hélice y volver a la mesa de dibujo.

Los seres vivos, por supuesto, no fueron diseñados nunca sobre el tablero de dibujo. Pero también se remontan a unos orígenes. Comienzan con cada nueva generación. Cada nuevo organismo empieza como una simple célula y crece de nuevo. Hereda las ideas del diseño ancestral en forma de un programa de ADN, pero no los órganos físicos de sus antecesores. No hereda el corazón de sus padres y lo remodela en uno nuevo (y posiblemente mejorado). Comienza como una célula sencilla y produce, a partir de ella, un nuevo corazón, utilizando el mismo programa de diseño que el corazón de sus padres, al que puede añadir alguna mejora. La conclusión ya empieza a quedar clara. Una cosa importante del ciclo vital «embotellado» es que hace posible el equivalente a volver a la mesa de dibujo.

El embotellamiento del ciclo vital tiene una segunda consecuencia, relacionada con la anterior. Proporciona un «calendario» que puede utilizarse para regular el proceso de la embriología. En un ciclo vital embotellado, cada nueva generación recorre más o menos la misma serie de eventos. El organismo comienza como una célula sencilla. Crece por división celular y se reproduce desprendiéndose de células hijas. Es probable que muera, aunque esto es menos importante de lo que nos parece a los mortales; en lo que concierne a esta discusión, el final del ciclo se alcanza cuando el organismo actual se reproduce y comienza un nuevo ciclo generacional. Aunque en teoría el organismo podría reproducirse en cualquier momento durante su fase de crecimiento, es de presumir que hay un instante óptimo para dicha reproducción. Los organismos que desprenden esporas cuando son demasiado jóvenes, o excesivamente viejos, acabarán con menos descendientes que sus rivales, que entonces se fortalecerán, emitiendo una cantidad masiva de esporas en la flor de la vida.

El argumento camina hacia la idea de un ciclo vital estereotipado que se repite con regularidad. No sólo cada generación comienza con un cuello de botella unicelular. Tiene también una fase de crecimiento — «infancia» — de duración bastante fija. Esa duración fija, el estereotipo, de la fase de crecimiento hace posible que cosas concretas sucedan en momentos concretos durante el desarrollo embrionario, como si estuvieran gobernadas por un calendario estrictamente observado. En grado variable en los diferentes tipos de criaturas, las divisiones celulares acaecidas durante el desarrollo se producen siguiendo una secuencia rígida, una secuencia recurrente en cada repetición del ciclo vital. Cada célula tiene su propia localización, su propio instante de aparición en la lista de las divisiones celulares. En algunos casos es tan preciso que los embriólogos pueden nombrar cada una de las células y puede decirse que una determinada célula en un organismo individual tiene su equivalente exacto en otro organismo.

Así, el ciclo de crecimiento estereotipado proporciona un reloj, o calendario, con el que pueden dispararse los sucesos embriológicos. Pensemos cómo nosotros mismos utilizamos los ciclos de la rotación diaria de la Tierra, y su circunnavegación anual alrededor del Sol, para estructurar y ordenar nuestras vidas. De la misma manera, los ritmos de crecimiento repetidos indefinidamente que imponen un ciclo vital embotellado se utilizarán —parece casi inevitable— para ordenar y estructurar la embriología.

Pueden conectarse y desconectarse genes concretos en momentos concretos, porque el calendario del ciclo crecimiento/cuello de botella garantiza que hay tal cosa en ese momento concreto. Una regulación tan bien sintonizada de la actividad génica es un requisito previo para la evolución de embriologías capaces de dominar complejos tejidos y órganos. La precisión y la complejidad del ojo de un águila o del ala de una golondrina no podrían emerger sin las reglas horarias de lo que debe aparecer y en qué momento.

La tercera consecuencia de la historia de la vida embotellada es genética. Aquí nos vuelve a servir el ejemplo de fuco-botella y alga-ostentosa. Volvamos a suponer, para mayor sencillez, que ambas especies se reproducen asexualmente y pensemos cómo pueden evolucionar. La evolución requiere un cambio genético, una mutación. Ésta puede suceder en el curso de cualquier división celular. En alga-ostentosa los linajes celulares avanzan en paralelo, al contrario que en fuco-botella. Cada rama que se desprende y va a la deriva es pluricelular. Por consiguiente, es muy posible que dos células de una hija sean parientes más lejanas que las células de la planta madre (por «parientes» entiendo literalmente primos, nietos, etc. Las células tienen líneas claras de descendencia y estas líneas están ramificadas, por lo que pueden emplearse palabras como primo segundo para designar determinadas células del cuerpo). En este aspecto fuco-botella se diferencia de forma notable de alga-ostentosa. Todas las células de la planta hija descienden de una única espora; por tanto, las células de cualquier planta dada son primas más cercanas entre sí que de cualquier célula de otra planta.

La diferencia entre ambas especies tiene importantes consecuencias genéticas. Pensemos en un gen recién mutado, primero en alga-ostentosa y después en fuco-botella. En alga-ostentosa, la nueva mutación puede aparecer en cualquier célula, en cualquier rama de la planta. Ya que las plantas hijas se producen por gemación, los descendientes lineales de las células mutantes pueden encontrarse compartiendo plantas hijas y plantas nietas con células no mutadas, que son primas lejanas suyas. En fuco-botella, por su parte, el antecesor común más reciente de todas las células de la planta no es más viejo que la espora que originó el inicio embotellado de la planta. Si esa espora contenía el gen mutante, todas las células de la nueva planta lo contendrán. Si no, tampoco. Las células de fuco-botella serán más uniformes genéticamente dentro de las plantas que en alga-ostentosa (dada alguna mutación inversa ocasional). En fuco-botella, la planta individual constituirá una unidad con una identidad genética y merecerá el nombre de individuo. Las plantas de alga-ostentosa tendrán menos identidad genética y tendrán menos derecho al nombre de «individuo» que sus correspondientes de fuco-botella.

No se trata de una cuestión de terminología. Con las mutaciones, dentro de una planta de alga-ostentosa las células no tendrán todas el mismo interés genético. Un gen de un alga-ostentosa ganará fomentando la reproducción de su célula. No necesariamente lo hará favoreciendo la reproducción de su planta «individual». La mutación hará poco probable que las células dentro de una planta sean genéticamente idénticas, por lo que no colaborarán entre sí con entusiasmo para fabricar órganos y nuevas plantas. La selección natural elegirá entre células más que entre «plantas». En fuco-botella, por el contrario, es probable que todas las células dentro de una planta tengan los mismos genes, porque sólo mutaciones muy recientes podrían dividirlos. Por consiguiente, colaborarán felices en la fabricación de máquinas de supervivencia eficaces. Las células en plantas diferentes tienen más probabilidades de tener genes diferentes. Después de todo, las células que han pasado a través de distintos cuellos de botella pueden distinguirse por todas las mutaciones, salvo las más recientes, y eso significa la mayoría. En consecuencia, la selección natural juzgará plantas rivales, no células rivales como en alga-ostentosa. Podemos esperar, por tanto, ver evolucionar órganos y estrategias que sirvan a toda la planta.

De paso, y estrictamente para aquellos que tienen un interés profesional, diremos que existe aquí una cierta analogía con el argumento sobre la selección de grupo. Podemos considerar al organismo individual como un «grupo» de células. Puede hacerse intervenir una forma de selección de grupo, siempre que se encuentren medios para incrementar la proporción de la variación entre-grupos y la variación dentro-del-grupo. El hábito reproductor de fuco-botella tiene exactamente el efecto de aumentar esta proporción; el de alga-ostentosa tiene justamente el efecto contrario. Existen también similitudes, que pueden resultar reveladoras, pero que no voy a explorar aquí, entre «embotellado» y otras dos ideas que han dominado este capítulo. En primer lugar, la idea de que los parásitos colaborarán con los huéspedes hasta el punto que sus genes pasarán a la siguiente generación en las mismas células reproductoras que los genes del huésped, estrujándose a través del mismo cuello de botella. Y en segundo lugar, la idea de que las células de un cuerpo reproductor sexual cooperan entre sí porque la meiosis es escrupulosamente imparcial.

Resumiendo, hemos visto tres razones por las que una historia embotellada de la vida tiende a fomentar la evolución del organismo como un vehículo discreto y unitario. Las tres pueden etiquetarse, respectivamente, como «volver a la mesa de dibujo», «ciclo temporalmente ordenado» y «uniformidad celular». ¿Cuál fue primero, el embotellamiento del ciclo vital o el organismo discreto? Me gustaría pensar que evolucionaron de modo conjunto. Y efectivamente, sospecho que la característica definitoria esencial de un organismo individual es que se trata de una unidad que comienza y acaba como un cuello de botella unicelular. Si los ciclos vitales sufren un embotellamiento, el material viviente parece estar ligado a su confinamiento en organismos unitarios discretos. Y cuando más material viviente se encajone en máquinas de supervivencia discretas, más concentrarán las células de dichas máquinas de supervivencia sus esfuerzos sobre la clase de células destinadas a transbordar sus genes compartidos a través del cuello de botella hasta la siguiente generación. Los dos fenómenos, ciclos vitales embotellados y organismos discretos, van cogidos de la mano. Al evolucionar cada uno de ellos, refuerza al otro. Los dos se realzan mutuamente, como la espiral de sentimientos de una mujer y un hombre durante el avance de su relación amorosa.

The Extended Phenotype es un libro largo y sus argumentos no pueden resumirse fácilmente en un capítulo. Me he visto obligado a adoptar aquí un estilo condensado, bastante intuitivo e incluso impresionista. De cualquier forma, espero haber conseguido trasmitir lo esencial del argumento. Me permitiré acabar con un breve manifiesto, un resumen de toda la visión gen egoísta/fenotipo extendido de la vida. Es una perspectiva, repito, que se aplica a cualquier ser viviente del universo. La unidad fundamental, el primer impulsor de la vida, es el replicador. Un replicador es cualquier cosa del universo de la que se hacen copias. Los replicadores se generan, en primer lugar, por casualidad, por el empujón aleatorio de pequeñas partículas. Una vez existe el replicador, es capaz de generar una serie indefinidamente grande de copias de sí mismo. Sin embargo, ningún proceso de copia es perfecto y la población de replicadores acabará conteniendo algunas variedades que difieren entre sí. Algunas de dichas variedades habrán perdido la capacidad de autorreplicación. Otras seguirán haciéndolo, pero de forma menos eficiente. Otras más se encontrarán en posesión de nuevos trucos: se han vuelto mejores autorreplicadores que sus antecesores y contemporáneos. Son sus descendientes los que dominarán la población. Al pasar el tiempo, el mundo se llena de los replicadores más poderosos e ingeniosos.

De modo gradual van descubriéndose maneras más elaboradas de ser un buen replicador. Los replicadores no sólo sobreviven en virtud de sus propias propiedades intrínsecas sino también por sus consecuencias sobre el mundo. Éstas pueden ser bastante indirectas. Todo lo necesario es que, eventualmente, dichas consecuencias, por tortuosas o indirectas que sean, regresen y afecten el éxito del replicador para copiarse a sí mismo. El éxito que un replicador tiene en el mundo depende del tipo de mundo que haya, es decir, de las condiciones preexistentes. Entre las condiciones más importantes estarán los otros replicadores y sus consecuencias. Lo mismo que los remeros ingleses y alemanes, los replicadores que son mutuamente beneficiosos predominarán en presencia de los otros. En cierto punto de la evolución de la vida en nuestro planeta, esta conspiración de replicadores mutuamente compatibles comenzó a formalizarse en la creación de vehículos discretos: células y, más tarde, cuerpos pluricelulares. Los vehículos que desarrollaron un ciclo de vida embotellado prosperaron y se volvieron más discretos y parecidos a vehículos. Este empaquetamiento de materia viva en vehículos discretos se convirtió en una característica tan destacada y dominante que, cuando los biólogos aparecieron en escena y comenzaron a plantear cuestiones acerca de la vida, sus preguntas se centraron en la mayoría de los casos en los vehículos, en los organismos individuales. El organismo individual fue el primero en llegar a la conciencia de los biólogos, mientras que los replicadores —conocidos ahora como genes— se consideraron una parte de la maquinaria utilizada por los organismos individuales. Requiere un deliberado esfuerzo mental volver a poner las cosas en orden en biología y recordar que los replicadores fueron los primeros, en importancia y en la historia.
Una manera de recordarnos nosotros mismos es reflejar que, incluso hoy, no todos los efectos fenotípicos de un gen van ligados al cuerpo individual en que reside. Es cierto que en principio, y también en la realidad, el gen se extiende más allá de los límites del cuerpo individual y manipula objetos del mundo exterior; algunos de ellos son inanimados; otros, seres vivientes y algunos están muy alejados de él. Con sólo un poco de imaginación podemos ver al gen sentado en el centro de una red radiante de poder fenotípico extendido. Y cualquier objeto en el mundo es el centro de una red convergente de influencias procedentes de muchos genes situados en muchos organismos. El largo brazo de los genes no conoce límites obvios. Todo el mundo está entrecruzado de flechas casuales que unen genes a efectos fenotípicos, lejos y cerca.

Es un hecho adicional, demasiado importante en la práctica como para ser llamado incidental pero no necesariamente lo bastante en la teoría como para calificarlo de inevitable, que estas flechas casuales se hayan agrupado. Los replicadores ya no van salpicados libremente por el mar; están empaquetados en enormes colonias, los cuerpos individuales. Y las consecuencias fenotípicas, en lugar de distribuirse uniformemente por el mundo, se han congelado en muchos casos en esos mismos cuerpos. Pero el cuerpo individual, que nos es tan familiar en nuestro planeta, no tiene por qué existir. La única clase de entidad que debe existir para que surja la vida, en cualquier lugar del universo, es el replicador inmortal.













En El gen egoísta, Cap. XIII (1985)
Traducción: Juana Robles Suárez y José Tola Alonso
Edición Barcelona, Salvat, 1993







0 comentarios:
Publicar un comentario




***

Archivo

  © Blogger templates Romantico by Ourblogtemplates.com 2008

Back to TOP